Jump to content

Hadoop Demo On 21St Oct At 9.30 Pm(Est) By Certified Trainer


training4u

Recommended Posts

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [b][color=#FF0000][email protected][/color][/b]

Contact No: [b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b][/size][/font][/color]

[b][color=#800080][size=6]Hadoop new batch starts on 21st Oct At 9.30 PM(EST) || 22nd Oct at 7 AM(IST) [/size][/color][color=#800080][size=6]by certified trainer.[/size][/color][/b]
[b]HADOOP BASICS[/b]

[color=#282828][font=helvetica, arial, sans-serif] The Motivation for Hadoop [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Problems with traditional large-scale systems[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Data Storage literature survey  Data Processing literature Survey[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Network Constraints  Requirements for a new approach [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop: Basic Concepts [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] What is Hadoop? [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] The Hadoop Distributed File System[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop Map Reduce Works [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Anatomy of a Hadoop Cluster[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop demons [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]  Master Daemons[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Name node[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Job Tracker[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Secondary name node[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Slave Daemons[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Job tracker [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Task tracker[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HDFS(Hadoop Distributed File System) [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]  Blocks and Splits[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Input Splits[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HDFS Splits[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Data Replication[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop Rack Aware[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Data high availability [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Cluster architecture and block placement [/font][/color]

[color=#282828][font=helvetica, arial, sans-serif] CASE STUDIES Programming Practices & Performance Tuning [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Developing MapReduce Programs in[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Local Mode Running without HDFS[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Pseudo-distributed Mode Running all daemons in a single node[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Fully distributed mode Running daemons on dedicated nodes [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]Hadoop Administration [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Setup Hadoop cluster of Apache, Cloudera, Hortonworks, Greenplum [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Make a fully distributed Hadoop cluster on a single laptop/desktop[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure Apache Hadoop on a multi node cluster in lab.[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure Cloudera Hadoop distribution in fully distributed mode[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure Horton Works Hadoop distribution in fully distributed mode[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure Green Plum distribution in fully distributed mode[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Monitoring the cluster [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Getting used to management console of Cloudera and Horton Works[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Name Node in Safe mode[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Meta Data Backup[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Ganglia and Nagios – Cluster monitoring[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] CASE STUDIES [/font][/color]

[color=#282828][font=helvetica, arial, sans-serif]Hadoop Development [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Writing a MapReduce Program[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Examining a Sample MapReduce Program[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] With several examples[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Basic API Concepts [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] The Driver Code [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] The Mapper [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] The Reducer [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop's Streaming API[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Performing several Hadoop jobs [/font][/color]

[color=#282828][font=helvetica, arial, sans-serif] The configure and close Methods [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Sequence Files[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Record Reader[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Record Writer[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Role of Reporter[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Output Collector  Counters[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Directly Accessing HDFS[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] ToolRunner[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Using The Distributed Cache[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Several MapReduce jobs (In Detailed) [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] MOST EFFECTIVE SEARCH USING MAPREDUCE[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] GENERATING THE RECOMMENDATIONS USING MAPREDUCE[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] PROCESSING THE LOG FILES USING MAPREDUCE[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Identity Mapper [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Identity Reducer[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Exploring well known problems using MapReduce applications[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Debugging MapReduce Programs [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Testing with MRUnit[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Logging [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Other Debugging Strategies[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif].  Advanced MapReduce Programming [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] The Secondary Sort  Customized Input Formats and Output Formats[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Joins in MapReduce  Monitoring and debugging on a Production Cluster [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Counters  Skipping Bad Records  Running in local mode[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Tuning for Performance in MapReduce [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Reducing network traffic with combiner  Partitioners  Reducing the amount of input data [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Using Compression  Reusing the JVM  Running with speculative execution [/font][/color]

[color=#282828][font=helvetica, arial, sans-serif] Other Performance Aspects  CASE STUDIES  CDH4 Enhancements [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Name Node High – Availability[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Name Node federation[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Fencing  MapReduce Version - 2 [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]HADOOP ANALYST [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hive [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hive concepts  Hive architecture[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure hive on cluster[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Different type of tables in hive  Hive library functions[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Buckets[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Partitions[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Joins in hive[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Inner joins  Outer Joins[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hive UDF  PIG [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]  Pig basics  Install and configure PIG on a cluster  PIG Library functions[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Pig Vs Hive  Write sample Pig Latin scripts  Modes of running PIG[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Running in Grunt shell  Running as Java program  PIG UDFs  Pig Macros[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Debugging PIG  IMPALA[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Difference between Impala Hive and Pig[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] How Impala gives good performance[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Exclusive features of Impala[/font][/color]

[color=#282828][font=helvetica, arial, sans-serif] Impala Challenges  Use cases of Impala [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]NOSQL [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HBase [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]  HBase concepts  HBase architecture  Region server architecture[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] File storage architecture  HBase basics  Column access  Scans[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HBase use cases  Install and configure HBase on a multi node cluster [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Create database, Develop and run sample applications[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Access data stored in HBase using clients like Java, Python and Pearl[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Map Reduce client to access the HBase data[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HBase and Hive Integration[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] HBase admin tasks  Defining Schema and basic operation.[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Cassandra Basics[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] MongoDB Basics [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif]Other EcoSystem Components [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Sqoop [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure Sqoop on cluster[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Connecting to RDBMS  Installing Mysql[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Import data from Oracle/Mysql to hive[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Export data to Oracle/Mysql[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Internal mechanism of import/export [/font][/color]

[color=#282828][font=helvetica, arial, sans-serif] Oozie [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Oozie architecture  XML file specifications[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configuring Oozie and Apache[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Specifying Work flow  Action nodes  Control nodes[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Oozie job coordinator [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Flume, Chukwa, Avro, Scribe, Thrift [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Flume and Chukwa concepts [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Use cases of Thrift, Avro and scribe[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Install and configure flume on cluster [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Create a sample application to capture logs from Apache using flume  Hadoop Challenges [/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop disaster recovery[/font][/color]
[color=#282828][font=helvetica, arial, sans-serif] Hadoop suitable cases [/font][/color]

[b]HIGHLIGHTS
 100% CERTIFICATION ASSURANCE
 BIG DATA UNIVERSITY(IBM) CERTIFICATION FREE
 TECHNICAL SUPPORT
 INTERVIEW QUESTIONS
 SAMPLE RESUMES[/b][color=#282828][font=helvetica, arial, sans-serif] [/font][/color]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

[color=#282828][font=helvetica, arial, sans-serif][size=6]Email: [/size][/font][/color][b][color=#FF0000][email protected][/color][/b]

[color=#282828][font=helvetica, arial, sans-serif][size=6]Contact No: [/size][/font][/color][b][color=#FF0000]+91 9036 298 699 (or) +91 78 29 29 7899[/color][/b]

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...