Jump to content

Spark & Scala Online Training|Support


training21

Recommended Posts

Selfpacedtech is the best Online Training providers worldwide with real time experts :

Spark & Scala Course Content : 

Describe Features of Apache Spark

·         How Spark fits in Big Data ecosystem

·         Why Spark & Hadoop fit together

Define Spark Components

·         Driver Program

§  Spark Context

·         Cluster Manager

·         Worker

§  Executor

§  Task

·         Spark RDD

§  Spark Context

·         Spark Libraries

Load data into Spark

·         Different data sources and formats

 §  HDFS

§  Amazon S3

§  Local File System

§  Text

§  JSON

§  CSV

§  Sequence File

 ·         Create & Use RDD, Data Frames

Apply dataset operations to Resilient Distributed Datasets

·         Transformation

·         Actions

·         Cache Intermediate RDD

 §  Lineage Graph

§  Lazy Evaluation        

Use Spark DataFrames for simple queries

·         Create Data Frame

·         Spark Interactive shell (Scala & Python)

·         Spark SQL

Define different ways to run your application

Build and launch a standalone application

·         Spark Program Life Cycle

·         Function of Spark Context

·         Different Way to Launch Spark Application

 §  Local

§  Standalone

§  Hadoop YARN

§  Apache Mesos

 ·  Launch Spark Application

 §  Spark-Submit

§  Monitor the Spark Job

Describe & Create pair RDD

·         Key-Value pair

·         Apache Spark vs Apache Hadoop MapReduce

·         Create RDD from existing non-pair RDD

·         Create pair RDD by loading certain formats

·         Create pair RDD from in-memory collection of pairs

Apply Operations on pair RDD

·         Group ByKey

·         Reduce ByKey

·         Other Transformations

 §  Joins

Control partitioning across nodes

·         RDD Partition

·         Types of Partition

 §  Hash Partitioning

§  Range Partitioning

 ·         Benefit of Partitioning

·         Best Practices

More on Data Frames

·         Explore Data in DataFrames

·         Create UDFs (user define functions)

 §  UDF with Scala DSL

§  UDF with SQL

 ·         Repartition Data Frames.

·         Infer Schema by Reflection

·         DataFrame from database table

·         DataFrame from JSON

Monitor Apache Spark Applications

·         Spark Execution Model

·         Debug and Tune Spark Applications

Identify Spark Unified Stack Components

·         Spark SQL

·         Spark Streaming

·         Spark MLib

·         Spark GraphX

Benefits of Apache Spark over Hadoop Ecosystem

Describe Spark Data pipeline Use Cases

·         Spark Streaming Architecture

·         Dstream and a spark streaming application

 

§  Define Use Case (Time Series Data)

§  Basic Steps

§  Save Data to HBase

 

·         Operations on DStream

§  Transformations

§  Data Frame and SQL Operations

·         Define Windowed Operation

 

§  Sliding Window

§  Windowed Computation

§  Window based Transformation

§  Window Operations

 

·         Fault tolerance of streaming applications

 

§  Fault Tolerance in Spark Streaming

§  Fault Tolerance in Spark RDD

§  Check pointing

Describe Graph X

Define Regular, Directed, and property graphs

Create a Property Graph

Perform Operations on Graphs

Describe Apache Spark MLib

Describe the Machine Learning Techniques

·         Classifications

·         Clustering

·         Collaborative Filtering

Use Collaborative filtering to predict user choice

Scala

·         Introduction

·         A first example

·         Expressions and Simple Functions

·         First Class function

·         Classes and Objects

·         Case classes and Pattern matching

·         Generic types and methods

·         Lists

·         For- Comprehension

·         Mutable State

·         Computing with Streams

·         Lazy Values

·         Implicit Parameters and Conversions

·         Handley / Milner type Interface

·         Abstraction for concurrency

1504593714Spark%20and%20Scala.jpg

     Contact US : 309 - 200 - 3848 / 2019051656 / +91 9030990003

 

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...