Jump to content

Recommended Posts

Posted

Suppose we have 3 cards identical in form except that both sides of the first card are colored red, both sides of the second card are colored black, and one side of the third card is colored red and the other side is colored black.
The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down on the ground. If the upper side of the chosen card is colored red, what is the probability that the other side is colored black?

Posted

think about it. Answer is 1/3. 

if you are interested, read Baye’s theorem on conditional probabilities and Monty Hall game

  • Upvote 1
Posted
41 minutes ago, hunkyfunky2 said:

1/2

Answer is 1/3.

out of total 6 sides, 3 are colored red. Let’s mark the red sides as A,B (two sides of same card), C other card.

 1. A is up, B is down

2. B is up, A is down

3. C is up, and down is black

 

Posted

There are 6 sides of all 3 cards, among them 3 are reds and 3 are blacks.

Only 2 cards have at least one side red. They have 4 sides with 3 red and 1 black.

If the upper side is red, then we have lower side either (remaining) 2 reds or 1 black. The probability of getting black is 1/3.

i.e., 1 black / (2 reds+1 black).

Posted
4 hours ago, Starblazer said:

There are 6 sides of all 3 cards, among them 3 are reds and 3 are blacks.

Only 2 cards have at least one side red. They have 4 sides with 3 red and 1 black.

If the upper side is red, then we have lower side either (remaining) 2 reds or 1 black. The probability of getting black is 1/3.

i.e., 1 black / (2 reds+1 black).

Correct 👏 

Posted
8 hours ago, Rone123 said:

Suppose we have 3 cards identical in form except that both sides of the first card are colored red, both sides of the second card are colored black, and one side of the third card is colored red and the other side is colored black.
The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down on the ground. If the upper side of the chosen card is colored red, what is the probability that the other side is colored black?

1/4

Posted
9 hours ago, Rone123 said:

Suppose we have 3 cards identical in form except that both sides of the first card are colored red, both sides of the second card are colored black, and one side of the third card is colored red and the other side is colored black.
The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down on the ground. If the upper side of the chosen card is colored red, what is the probability that the other side is colored black?

1/3 ani swatkat anan cheppamnadu anna vendy eyyi 

Posted
8 hours ago, Rone123 said:

Answer is 1/3.

out of total 6 sides, 3 are colored red. Let’s mark the red sides as A,B (two sides of same card), C other card.

 1. A is up, B is down

2. B is up, A is down

3. C is up, and down is black

 

there is one card in 3 cards which can show red up and down black...its straight forward picking up any one card out of 3 is 33.335 which is 1/3..

dont make it complex..when solution is simple

  • Upvote 1
Posted

Yes, it works out that way. But not obvious, antha easy ayi vunte, Bayes theorem ki aa name vachedi kadu kada

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...